Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

G. T. Sruthi,^a D. Gayathri,^a D. Velmurugan,^a* K. Ravikumar^b and N. Arumugam^c

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ^cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.053 wR factor = 0.147 Data-to-parameter ratio = 9.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

tallographica Section E

Ethyl 2-(1*H*-indol-3-yl)-5-[1-(4-methoxyphenyl)-4-oxo-3-phenylazetidin-2-yl]-4-nitro-3-(*p*-tolyl)pyrrolidine-2-carboxylate

In the title molecule, $C_{39}H_{38}N_4O_6$, the pyrrolidine ring adopts a twist conformation. The crystal packing is stabilized by N– $H \cdots O$ and C– $H \cdots O$ intermolecular interactions. Received 15 March 2007 Accepted 25 March 2007

Comment

The β -lactam ring plays a key role in the most widely employed class of antimicrobial agents. The newer β -lactam antibiotics can be highly effective in combating infections caused by β -lactamase-producing organisms. Therefore, much effort has been extended in recent years to prepare new structural types having a β -lactam ring as a common feature, which will overcome the defence mechanisms of the bacteria (Alcaide *et al.*, 2003). As the β -lactam derivative is of much importance, we have underataken the X-ray crystal structure determination of the title compound, (I).

The sums of the bond angles around N3 (359.9) and N4 (359.6) indicate that they are sp^2 -hybridized. The internal angles in the β -lactam ring vary from 84.8 (2) to 95.1 (3)°. The azetidin-2-one group is planar and the attached C26–C31 phenyl and C33–C38 benzene rings are twisted away by 71.4 (2) and 31.7 (2)°, respectively. The dihedral angle between the C26–C31 and C33–C38 rings is 40.5 (1)°. The methoxy group at C36 is twisted away from the attached ring, with a torsion angle C35–C36–O6–C39 of –161.0 (5)°.

The indole ring system is planar to within ± 0.014 (3) Å. The pyrrolidine ring adopts a twist conformation, with a pseudotwofold axis passing through atom C2 and the C4–N1 bond; the puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) are $q_2 = 0.371$ (3) Å, $\varphi = 334.7$ (4)° and $\Delta_s(C_2) = 6.6$ (2)°.

All rights reserved

© 2007 International Union of Crystallography

The molecular structure of (I), showing 30% probability displacement ellipsoids.

The molecular packing of (I), viewed approximately down the a axis. For clarity, H atoms not involved in the hydrogen bonds (dashed lines) have been omitted.

The molecular structure is stabilized by a weak C2-H2···O3 interaction. The crystal packing is stabilized by N- $H \cdots O$ and $C - H \cdots O$ intermolecular interactions (Table 2). Atom N2 acts as a donor to O5 at $(\frac{1}{2} + x, \frac{1}{2} - y, -\frac{1}{2} + z)$, generating a C(12) chain. Atom C12 acts as a donor to O3 at (x, y, -1 + z), generating a C(10) chain along the *c* axis (Fig. 2). Atom C16 acts as a donor to O3 at $(x, -y, -\frac{1}{2} + z)$, generating a C(10) chain.

Experimental

4-Formylazetidin-2-one (1 mmol) was treated with tryptophan ethyl ester hydrochloride (1 mmol) in the presence of Et₃N (2.5 mmol) and anhydrous MgSO₄ (10 g) in dry dichloromethane (10 ml) at room temperature afforded the imine, (E)-ethyl-2-[1-(4-methoxyphenyl)-4oxo-3-phenylazetin-2-yl]methyleneamino)-3-(1H-indol-3-yl)propanoate. The imine (1 mmol) was then stirred with silver(I) acetate (1catalytic amount) and p-methylnitrostyrene (1 mmol) in the presence of Et₃N (1.2 mmol) and molecular sieves in dry toluene (30 ml) at room temperature for 12 h. The reaction mixture was filtered through a plug of Celite. The solvent was evaporated under reduced pressure and the residue was subjected to column chromatography on silica gel (100-200 mesh), eluting with hexane-ethyl acetate (7:3), to give the title compound. The compound was recrystallized from ethyl acetate by slow evaporation.

Crystal data

$C_{39}H_{38}N_4O_6$	V = 3513.7 (4) Å ³
$M_r = 658.73$	Z = 4
Monoclinic, Cc	Mo $K\alpha$ radiation
$a = 11.2689 (8) \text{\AA}$	$\mu = 0.09 \text{ mm}^{-1}$
b = 35.612 (2) Å	T = 293 (2) K
c = 8.8848 (6) Å	$0.27 \times 0.24 \times 0.23~\mathrm{mm}$
$\beta = 99.785 \ (1)^{\circ}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: none 20233 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	2 restraints
$wR(F^2) = 0.147$	H-atom parameters constrained
S = 1.13	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
4167 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$
446 parameters	

4167 independent reflections

 $R_{\rm int} = 0.023$

3771 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

C1-N1	1.459 (3)	C8-N2	1.349 (4)
C3-N3	1.511 (4)	C14-O1	1.201 (4)
C4-N1	1.452 (3)	C24-N4	1.477 (4)
C7-N2	1.371 (4)	C32-O5	1.207 (4)
N4-C24-C25	86.7 (2)	O3-N3-C3	119.2 (3)
C32-C25-C24	84.8 (2)	C32-N4-C33	131.2 (3)
O4-N3-O3	123.0 (3)	C32-N4-C24	95.1 (3)
O4-N3-C3	117.7 (3)	C33-N4-C24	133.3 (2)
-			

Table 2		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C2-H2···O3	0.98	2.29	2.742 (4)	107
$N2-H2A\cdots O5^{i}$	0.86	2.05	2.829 (4)	149
$C12-H12\cdots O3^{ii}$	0.93	2.57	3.216 (4)	127
$C16-H16A\cdots O3^{iii}$	0.96	2.55	3.488 (7)	167

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x, y, z - 1; (iii) $x, -y, z - \frac{1}{2}$.

H atoms were positioned geometrically and allowed to ride on their parent atoms, with N-H = 0.86 Å, C-H = 0.93-0.98 Å and $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm methyl}\ {\rm C})$ and $1.2 U_{\rm eq}({\rm C,N})$. In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PARST* (Nardelli, 1995).

DV thanks DST, India, for a major research project and DG thanks CSIR, India, for the award of a Senior Research Fellowship. the Department of Science and Technology (DST–FIST) and University Grants Commission (UGC), Government of India, are acknowledged by DV for providing facilities to the department.

References

- Alcaide, B., Almendros, P., Alonso, J. M. & Redondo, M. C. (2003). J. Org. Chem. 68, 1426–1432.
- Bruker (2001). SMART (Version 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.